
DropAlan: An Input-Weighted Approach to Dropout Regularization

Alan Casallas∗

MIT
(Dated: December 13, 2018)

Dropout and RELU-based activation functions are ubiquitous in the machine learning industry
today. However, there is a discrepancy between the network that Dropout trains and the resulting
network that is used for inference. Additionally, RELU neurons can suffer from the ’dead RELU’
problem, where a neuron that outputs 0 during training can no longer train. To address these issues,
I introduce DropAlan, a technique where no activation function is used. Instead, the dropout rate
for each neuron is a function of the input wTx so that in expectation, the output is similar to a
RELU unit. Experimental results on the CIFAR-10 dataset were interesting, showing a version of
DropAlan to score slightly lower than traditional Dropout but converge much faster. Results on
the MNIST dataset were very favorable towards DropAlan, showing it matched the performance of
Dropout but converged faster.

I. INTRODUCTION

Dropout is a commonly used form of regularization
for neural networks. The technique consists of randomly
setting the output of selected neurons to 0 with some
probability p during each training iteration. When the
trained net is used for inference, all neurons are used.
Neuron outputs are scaled by 1

1−p to roughly set the ex-

pectation of an output neuron to the same value it would
have without Dropout. [1]

In this paper I will introduce DropAlan, a regulariza-
tion technique that involves dropping a neuron during
training with a probability dependent on the input to
the neuron. In other words, the dropout probability for
each training iteration is a function of the weighted sum
of the input vector, or p = f(wTx).

In my implementation of DropAlan, the probability of
dropping a neuron is 0 if the input is greater than 0, and
the probability increases as the input became more neg-
ative. This approach adheres to the philosophy espoused
by the recent use of RELU-based activation functions,
which deterministically output 0 or a small negative value
if the input is negative, and a positive output for posi-
tive inputs. In the following sections, I will present the
reasons for my interest in developing DropAlan, exper-
imental results on the CIFAR-10 and MNIST datasets,
and a brief theoretical analysis of its probabilistic prop-
erties.

II. DESCRIPTION

The DropAlan technique works by randomly dropping
a neuron (setting its output to 0) during each training
iteration according to a probability that is a function of
the input to the neuron. Two separate dropout proba-
bility functions were used in this research, which I call

∗ alancas@mit.edu

FIG. 1. α Probability Function and Expectation

probability distributions α and β:

pα(wTx) =


.8, wTx < −1,

−.8 ∗ wTx, −1 < wTx < 0,

0, wTx > 0.

pβ(wTx) =


1 + .2

wT x
, wTx < −1,

.8, −1 < wTx < 0,

0, wTx > 0.

Both of these distributions attempt to emulate the phi-
losophy of RELU activation functions in different ways.
As Figure 1 shows, the ’keep’ probability of distribution
α exhibits a curve reminiscent to RELU-based functions,

2

where positive input values are kept and negative input
values are discarded. However, as seen in the second plot
of the figure, the expectation of the neuron output with
distribution α is dissimilar to a RELU activation func-
tion, most jarringly in the curve exhibited in the interval
−1 < wTx ≤ 0.

Probability distribution β is designed such that the ex-
pectation of the neuron will be similar to a RELU-based
activation funcion, as can be observed in Figure 2. The
disadvantage of this distribution is that the probability
requires tensor division and is thus more computationally
expensive.

One of the motivations behind DropAlan was the dead
RELU problem. It is well known [2] that when training a
network with RELU activation functions, some neurons
fall into a state where they output 0 and never leave that
state. This is understandable, since the gradient of the
RELU function is 0 for wTx < 0. Other activation func-
tions have been developed to deal with this problem [3],
one of the most successful of which is the ELU activation
function. Nevertheless, even the ELU activation func-
tion can have a small gradient for very negative values of
wTx.

In the DropAlan approach, no activation function is
used; the output of a neuron is simply the dot product
wTx. However, negative values of wTx will be dropped
with greater probability. Thus, although in expectation
the output of neurons with negative inputs will be small,
these neurons will be given a greater chance to ’escape’
from their low-output state during gradient descent iter-
ations when they are not dropped.

Prior to my experiments, I performed a literature re-
view on variants of Dropout. DropConnect, described
in [4], is a version of Dropout where individual weights,
rather than neurons, are dropped randomly. Data-
dependent Dropout is explored in [5]; specifically, the pa-
per describes a method of keeping a running count of the
dataset’s mean and variance and changing the dropout
rate according to those statistics. However, I could not
find a version of Dropout similar to DropAlan, where
the Dropout rate for each neuron is a function of wTx,
activation functions are not used, and the Dropout prob-
ability function is set to mimic an activation function in
expectation.

III. EXPERIMENTAL RESULTS

To test the performance of DropAlan, I decided to train
several neural networks on the CIFAR-10 and MNIST
datasets. I planned to train four networks: 1) a basic
Convolutional Neural Network composed of three convo-
lutional layeres, followed by a 1000-unit dense layer, and
a 10-unit dense output layer, 2) the same CNN, but with
a dropout layer after the 1000-unit dense layer, 3) the
same CNN, but with a DropAlan layer using probabil-
ity distribution α as the 1000-unit dense layer, and 4)
the same CNN, but with a β DropAlan layer. I empha-

FIG. 2. β Probability Function and Expectation

size that where DropAlan layers were used, no activation
function was used for the corresponding dense layer. All
input was subtracted by the training set mean and di-
vided by 255.0, so that the input contained both nega-
tive and positive values. The network was trained using
a Gradient Descent Optimizer with a .01 learning rate on
a Sparse Softmax Cross Entropy loss function.

The purpose of this experiment was not to outperform
existing state-of-the-art results on CIFAR-10, such as
the results achieved by RESNET, but instead to com-
pare how the DropAlan technique compares to tradi-
tional Dropout and what adjustments may be needed to
improve performance.

Full source code and experiment results can be
found in my GitHub repository: https://github.com/
acasallas/6860-final-project

A. DropAlan Implementation

I used the Tensorflow framework to perform the ex-
periment. Although the Tensorflow Dropout layer is not
suited to a network that requires setting the dropout rate
based on the value of the neuron input, I was able to
re-write the Tensorflow dropout code to suit my needs.
Most importantly, I implemented functionality to apply
a different dropout probability to each unit. Below is the
critical code, which replaces the tf.nn.dropout() method

3

for the purpose of an DropAlan layer. It uses a tensor
of random variables of the same dimension as the input
batch and effectively applies a different dropout proba-
bility to each neuron.

de f mydropout (x , keep prob) :
#keep prob i s a t enso r o f
#p r o b a b i l i t i e s between 0 .0 and 1 .0
rand tenso r += t f . random . uniform (

keep prob . shape)
b i n a r y t e n s o r = t f . f l o o r (rand tenso r)
r e t = t f . mul t ip ly (x , b i n a r y t e n s o r)
re turn r e t

To calculate the drop probability (equivalent to 1-
keepprob) during each iteration, I enabled eager execu-
tion in Tensorflow and overrode the tf.keras.Layer.call()
method. The code used to calculate a matrix of drop
probabilities for both distribution α and distribution β
is found below:

de f c a l l (s e l f , inputs) :
#prob alpha
ra te matr ix1 =

t f . c l i p b y v a l u e (
inputs ∗(− .8)
, 0 , . 8)

#prob beta
ra te matr ix2=

t f . c l i p b y v a l u e (
1.0+ t f . d i v i d e (. 2 , inputs) ,
. 8 , . 9 9 9) ∗
t f . s i gn (t f . nn . r e l u (−1∗ inputs))

I took care to ensure my implementation was correct. I
confirmed that setting all drop probabilities to 1.0 caused
the network to exhibit 0.10 accuracy (and a cross en-
tropy loss of 2.30), meaning it was randomly guessing
answers. I also printed tensors while developing my code
to ensure probabilities and neuron outputs were being
correctly calculated.

B. Results

The table below shows the results of training the net-
works on the CIFAR-10 dataset. The accuracy column
gives the highest score that the network achieved on a
validation set, and the convergence column is the train-
ing iteration step in which the score was achieved.

Net Accuracy Convergence
CNN 0.724 113,000

CNN w/ Dropout 0.736 110,000
CNN w/ DropAlan, Prob α 0.699 28,000
CNN w/ DropAlan, Prob β 0.704 35,000

CNN w/ DropAlan, Prob β (scaled) 0.723 42,000

TABLE I. CIFAR-10 dataset results

FIG. 3. DropAlan loss and accuracy

FIG. 4. Dropout vs. DropAlan Accuracy

As the table shows, the first two DropAlan networks
did not score as well as traditional CNNs, although they
converged to their peak score sooner. However, the last
entry in the table ’CNN w/ DropAlan, Prob β (scaled)’
achieved a score comparable to a CNN without Dropout,
but, more significantly, converged to its maximum score
much sooner than traditional CNNs did.

This last network was an accidental experiment, as I
forgot to remove the snippet of code from the Tensorflow
base that scaled the output of a dropout neuron by 1

1−p .

Thus, this network used DropAlan, but with the scaling
technique of traditional Dropout. Although this network
produced a better result than the other two DropAlan
networks, it crashed after about 55,000 iterations. Fig-
ure 3 shows a graph of the loss and accuracy of this net-
work. At a certain point, the network lost its ability to
inference, as the loss increased to 2.30 and the accuracy

4

decreased to 0.10, both indicative of a complete lack of
inference for a dataset with 10 labels.

I cannot yet say with certainty why the training
crashed. One possibility is that there was division by
zero in my code, since the probability function contains
an interval for which the drop rate is 1 + .2

wT x
. Another

possibility is that the drop rate neared 1.0 for too many
neurons, similar to the dead RELU problem of tradi-
tional networks. This is possible with the β distribution
because the drop probability tends to 1.0 as wTx tends
to negative infinity. It is worth noting that I tried run-
ning the network again, with the same result: a crash at
around 50,000 iterations.

However, despite crashing, this DropAlan network con-
verged faster than the traditional Dropout CNN. While
DropAlan reached its peak accuracy of 0.723 at around
iteration 42,000, the Dropout CNN only had a peak accu-
racy of .704 by that iteration. Figure 4 plots the valida-
tion accuracies of the CNN w/ Dropout vs. the DropAlan
network. It is evident that before the DropAlan network
crashed, it had converged to its peak performance faster.

The table below shows the results of training the net-
work on the MNIST dataset:

Net Accuracy Convergence
CNN 0.9888 84,000

CNN w/ Dropout 0.9906 115,000
CNN w/ DropAlan, Prob α 0.9843 96,000
CNN w/ DropAlan, Prob β 0.9819 97,000

CNN w/ DropAlan, Prob β (scaled) 0.9906 102,000

TABLE II. MNIST dataset results

In this case, the last DropAlan network beat the per-
formance of the first CNN and exactly matched the per-
formance of the traditional Dropout network. Further-
more, it once again converged to its peak performance
faster than the Dropout network. The DropAlan network
did not crash during training as it did on the CIFAR-10
training set.

IV. THEORETICAL ANALYSIS

One of the motivations behind my development of
DropAlan was the possibility of developing a variant of
Dropout that was easier to analyze theoretically. In fact,
generalization bounds and other theoretical analysis of
traditional Dropout suffer from a significant problem: the
trained network is different than the final network used
for inference. To be more precise, we can represent the
output of a Dropout layer during training symbolically,
as shown below, where θ is a Bernoulli random variable
tensor, ∗ represents element-wise multiplication, and σ
represents some non-linear activation function. Thus, the
output ŷ is a random variable even for a fixed input x:

ŷ = σ(wTx ∗ θ)

The creators of Dropout intended for the trained network
to be deterministic, and ideally recommended using the
expectation of the trained network for inference. The
expectation of a single layer is below, and the expectation
of an entire neural net is complicated by the fact that we
are taking expectations of a composition of functions.

E[σ(wTx ∗ θ)]

Due to the non-linearity of the network activation func-
tions σi, the expectation of the entire network can be
difficult to calculate theoretically. For a network with
N Dropout neurons, calculating the expectation numer-
ically would involve attempting all 2N possible combina-
tions of random variables θ, which is infeasible. Thus, the
creators of dropout recommend using an approximated
network for inference, which involves approximating the
expectation of a layer as follows:

E[σ(wTx ∗ θ)] ∼= σ(wTx ∗ E[θ])

In the case of traditional dropout, the above expression
evaluates to:

E[σ(wTx ∗ θ)] ∼= σ(wTx ∗ (1− p))

This approximation has empirically been shown to pro-
duce good results in practice, as the widespread prolifer-
ation of Dropout can attest to. Theoretically, however,
the approximation means that the scaling factor 1

1−p that

a dropout neuron is multiplied by is not precisely the
correct factor to scale by in order to preserve the expec-
tation of the output of a neuron. More significantly, the
approximation complicates the analysis of generalization
bounds of neural networks trained with dropout. Most
generalization bound techniques depend on the assump-
tion that the same network that was trained will be used
for inference, as opposed to an approximation to that
network.

The work done in [6] investigates this discrepancy, and
defines the concept of an Expectation-Linear Layer. The
formula for an Expectation-Linear layer, adapted to the
notation I have defined, is as follows:

||E[σ(wTx ∗ θ)]− σ(wTx ∗ E[θ])||2 = 0

The paper states that networks with non-linear activa-
tion functions, such as RELU and the sigmoid function,
do not have Expectation-Linear Layers, but can exhibit
an approximately Expectation-Linear behavior.

However, I claim that DropAlan layers are
Expectation-Linear for a fixed input x. This is be-
cause they do not use activation functions, rather the
output of a neuron is simply the dot product wTx. Thus,
the σ function in the neural net representation above is
just an identity function, and the expression reduces to:

||E[(wTx ∗ θ)]− (wTx ∗ E[θ])||2 = 0

For a fixed x, we can see that the expression for
Expectation-Linearity becomes:

||[(wTx ∗ E[θ])− (wTx ∗ E[θ])||2 = 0

5

0 = 0

Futhermore, the above use of linearity of expectation
will extend to compositions of DropAlan layers, since no
non-linear activation functions are used.

Thus, the DropAlan architecture allows us to under-
stand what the output of a layer will be in expectation,
and we do not have to rely on approximations as in the
case of traditional Dropout. We can thus have a bet-
ter understanding of the effect that any scaling factor we
apply will have on the neuron output.

V. CONCLUSION

The DropAlan technique with probability distribution
β was able to achieve similar or better accuracy results
as compared to Dropout, but converged quicker. There
is definetly room for further development, as training
crashed on the CIFAR-10 dataset. However, the tech-
nique shows promise, especially in its ability to more
quickly converge to its final solution.

Future research on the technique could focus on adjust-
ing the hyperparameters of the β distribution to improve

on the results shown in this paper. Furthermore, the
experiments in this paper can be re-run with more gran-
ularity; I only recorded accuracy and loss information
after every 1000 iterations. Additionally, exploring the
effect of using RELU-based activation functions or Batch
Normalization along with DropAlan is another avenue of
future research.

More theoretical work can be done on this approach
to. Although my brief theoretical treatment showed that
the expectation of a network using DropAlan, as opposed
to traditional Dropout, can be easier to understand, this
was contingent on taking the expectation with regards
to a fixed input x. Future work can explore how the ex-
pectation of a DropAlan layer compares to the expecta-
tion of a layer with Relu and Dropout and also exploring
whether better generalization bounds can be developed
for DropAlan than the ones we have for Dropout.

It is also worth analyzing why scaling the output of a
DropAlan neuron improved accuracy, and whether such
scaling is inherently necessary or simply indicative of a
neuron output expectation that works better for infer-
ence. Once refined, the DropAlan technique may one
day lead to neural networks that converge quicker and
are more accurate than current state-of-the-art systems.

[1] Nitish Srivastava, Geoffrey Hinton,Alex Krizhevsky,Ilya
Sutskever,Ruslan Salakhutdinov Dropout: A Simple Way
to Prevent Neural Networks from Overfitting. Journal of
Machine Learning Research, 2014.

[2] He Hu Symmetric Rectified Linear Units for Fully Con-
nected Deep Models. Lecture Notes in Computer Science,
vol 11062. Springer, Cham, 2018.

[3] Bing Xu, Naiyan Wang, Tianqi Chen, Mu Li Empirical
Evaluation of Rectified Activations in Convolution Net-
work . arXiv preprint arXiv:1505.00853., 2015.

[4] Li Wan, Matthew Zeiler, Sixin Zhang, Yann LeCun, Rob

Fergus Regularization of Neural Networks using DropCon-
nect. Proceedings of the 30 th International Conference on
Machine Learning, 2013.

[5] Zhe Li, Boqing Gong, Tianbao Yang Improved Dropout for
Shallow and Deep Learning. 30th Conference on Neural
Information Processing Systems, 2016.

[6] Xuezhe Ma, Yingkai Gao, Zhiting Hu, Yaoliang Yu, Yun-
tian Deng, Eduard Hovy Dropout With Expectation-Linear
Regularization. The Seventh International Conference on
Machine Learning, 2017.

